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Abstract: Scanned images, such as those produced by the scanning-laser ophthalmoscope (SLO), show
distortions when there is target motion. This is because pixels corresponding to different image regions are
acquired sequentially, and so, in essence, are dlices of different snapshots. While these distortions create
problems for image registration algorithms, they are potentially useful for recovering target motion parameters
at tempora frequencies above the frame rate. Stetter, Sendtner and Timberlake (Vision Res, vol. 36, pp.
1987-1994, 1996) measured large distortions in SLO images to recover the time course of rapid horizontal
saccadic eye movements. Here, this work is extended with the goal of automatically recovering small eye
movements in two dimensions. Eye position during the frame interval is modeled using a low dimensional
parametric description, which in turn is used to generate predicted distortions of a reference template. The
input image is then registered to the distorted template using normalized cross correlation. The motion
parameters are then varied, and the correlation recomputed, to find the motion which maximizes the pesk value
of the correlation. The location and value of the correlation maximum are determined with sub-pixel precision
using biquadratic interpolation, yielding eye position resolution better than 1 arc minute (Mulligan, Behavior
Research Methods, Instruments and Computers, vol. 29, pp. 54-65, 1997). This method of motion parameter
estimation is tested using actual SLO images as well as smulated images. Motion parameter estimation might

also be applied to individual video lines in order to reduce pipeline delays for a near real-time system.

1. Introduction

Video image sequences are often used to track
object motion. Unless a special high frame-rate cam-
era is used, the recovered motion is usualy sampled
in time at the video frame rate (50-60 Hz). While
low resolution sampling is adequate for many applica-
tions, documentation of high-speed events often
requires higher temporal resolution. For images
obtained with a scanned system, in which individual
pixel values are acquired at different times, it is possi-
ble to obtain higher temporal resolution for the motion
of extended targets. The sequential nature of the
scanning process introduces geometric distortions in
the image of a moving target. By measuring these
distortions, high temporal resolution information about
the target motion can be recovered. This technique is
especialy useful when a priori knowledge about the
possible target motions permits a concise description
using low-dimensional parametric models, because
this reduces the space of possible distortions which
must be searched. In the following sections, expres-
sions for the precise form of the motion-induced dis-
tortions will be derived.
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1.1. Raster scanning

X,y position in image plane
sc(t).s,(1) position of scan at time t
fL line frequency (" 15 kHz)
fe frame rate ("60 Hz)

i index of current line

s start time of current line
tL time in current line, t—tg
VsxVsy scan velocities

Some imaging systems, using an electronic or
mechanical shutter, can simultaneously capture all of
the pixels in an image. In a scanned system, however,
only a single point is sensed at a given time, and the
location of this point is swept over the image area by
electronic or mechanical means. Here we present
some definitions and conventions that will allow us to
precisely describe the scanning process.

The imaging area is defined to be a rectangle
indexed by normal Cartesian coordinates X and Y.
The raster is defined by two scan functions, s, (t) and

(t), which represent the instantaneous beam posi-
tion. These functions are approximated by sawtooth
waveforms (see figure 1). By convention, the horizon-
tal dimension is scanned at a relatively high fre-
quency, caled the line frequency, f , while the
slower vertical frequency determines the frame rate,
fe
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Figure 1. Diagram of raster pattern on the left, with the
active portion of each line shown as a heavy solid line, and
retrace as a dashed line (see appendix). On the right, the
scan functions are shown over time.

Time t=0 in our temporal coordinate system is
the beginning of the current frame. By convention,
numbering of raster lines begins with 1; The index of
the current line, i, is

iLzlthJ. ®

We define tg to be the time of the start of the current
line, and t, to be the time relative to the start of the
current line:
[
tszf—L, and t, =t-ts  (2ab)
L

These quantities are illustrated graphically in figure 2.
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Figure 2: Raster waveform diagram, indicating the current
time, T, the start time of the current line, tg, and the time
within the current line, t .

The scan velocities, Vs, and Vg, describe the
rate a which the scanning beam traverses the image
plane. When expressed in units of image widths per
second, these are approximately equal to the scan fre-
quencies, f| and f g (see appendix for details). We
can write simple expressions for the instantaneous
scan position in terms of the scan velocities. The hor-
izontal scan position S, (t) is:
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S(t) =t vgy , (39)

In most scanning systems, the vertical scan is continu-
ous (partly due to "mechanical” constraints), and

s (1) =t vgy . (3b)

1.2. Effects of object motion

P a target point

Py (t).py (1) instantaneous position of P

P (1).0y (1) instantaneous velocity of P

Py (1).0y (1) instantaneous accel eration P
XoYo position of P at time t=0
XpYp position of P in scanned image
tp time P is scanned

We consider a fiducial point on the target,
located at coordinates (Xq,Yo) @ time 0. Let the posi-
tion at time t be expressed by the functions p,(t)
and py(t). These positions can be expressed using
Taylor series, where p, (0) is the X velocity at time O,
Py (0) is the acceleration, and so on:

Pe(t) = Xo + Pe(0) t + Y25, (0) t2 + - - -
py(t) =yo+ Py (0) t +%2p,(0) 2+ - -

We wish to know the position of the given
point, (Xp,yp), in the acquired image. When the
point’s tragjectory intersects the raster, the time at
which the point is scanned, tp, will be:

(43)
(4b)

Yp Xp
tpr=— + . 5
P Vey | Ve (53
gYe (5b)
Vsy

By making the approximation, we ignore the depen-
dence on horizontal position. This is justified on the
grounds that Vg, is large, and so this term will be
small. By definition, yp = p,(tp), and so the value
of tp obtained in eguation 5b may be substituted into
equation 4b, which can then be solved for yp. The
result can then be used to evaluate equation 4a to
obtain Xp.

In general, the raster will not pass directly over
the point, and features of finite size will often be
represented in more than one scan line. We assume
that little target motion occurs during a single line
time, so the position of a feature located between two
scan lines can be accurately determined by interpola-
tion, and results obtained for points lying directly on
the raster will hold for all points.
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1.3. Example: constant object velocity
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1.4. Example: constant object acceleration

VTxVTy target velocity, Py (t)=vr4

a,,a target acceleration, P, (t)=a,

We can use the results of the preceding section
to generate simulated distorted images for various
motions. We consider first the simple case where the
target moves with constant velocity, (V1 ,V1y):

pX(t) :XO+VT,Xt ’
py(t) =yo + vryt .

Following the strategy outlined above, we con-
struct the following equation for yp:

(62)
(6b)

Vty Yp
Yp =Yg+ —L—. (72)
S’y
__YoVsy (7b)
VS,y - VT,y
Vty Yo
=yo+ —L—. (7c)
VS,y - VT,y

We can use this result to derive a corresponding
expression for Xp:

VT,x Yo

Xp = XO + .
VS,y - VT,y

®

Several important points may be noted from
these equations: first, the deviation in feature position
for each component is proportional to yg, the vertical
position of the feature in the image, and to the
corresponding component of object velocity. We aso
notice that when vy 2Vg,, (object moving faster than
the raster), the solution corresponds to a negative
value of t, and does not correspond to a point in the
current frame.

v
Distortions arising from a target speed of %

are illustrated in figure 3. The left-hand patch shows
the image obtained when a square grid target is
moved at the right, while the right-hand patch shows
the image resulting from upward motion.

Figure 3: Image distortions of a regular grid for constant
velocity motion to the right (left) and upwards (right).

We assume the object accelerates from rest at
time O with accelerations &, and & :

Pu(t) = Xg + o3 t?, (99)
py(t) = yo + Yaa t?. (9b)
We first consider the case where =0 ie a

purely horizontal motion. In this case, the vertical
position of the fiducial point will not be changed, and

the raster will scan the point a time tp = VY_O .
SYy
Substituting this value into equation 9a, we obtain:
2
a py(0)
px(tP) =Xp * py2 . (10)
VSy

Equation 10 is quite similar to equation 8, except that
here the deviation is proportional to the square of the
vertical position. This case is illustrated on the left
side of figure 4.

The case of vertical accelerations is more com-
plex, due to the interaction between the accelerating
motion with the vertical scan. As we did above with
equation 7a, we begin by constructing an equation in
Yp!

3 yé
2 V4,

Yp=Yot ; (118
which after application of the quadratic formula
yields:

_ VS,y (VS,y T V)
P~ ’

&

(11b)

where

Y=V V& -23yo (12)
The smaller of two solutions corresponds to the first
coincidence of the raster and the point, while the
larger only exists when the acceleration is so large
that the point subsequently overtakes the raster.

When the acceleration is so large that the raster never
encounters the point, y is imaginary.

After more agebra, we can aso obtain this
result for Xp:

2
VSy ~& Yot VsyY

a

Xp=Xo+ (13)




